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This paper describes novel explicit algorithms that are uncondi-
tionally stable. The algorithms are applied to some 1D convection and
diffusion problems, including nonlinear problems. Algorithms such as
these are of particular interest for massively parallel computers, where
one is trying to minimize communications while at the same time main-
tain the stability properties normally associated with implicit schemes.
It is shown how these stable algorithms can be applied in higher spatial
dimensions and how they can be extended to problems defined on
unstructured meshes,  © 1993 Academic Press. Inc.

INTRODUCTION

There continues to be a great deal of debate over explicit
versus implicit computational fluid dynamics (CFD)
algorithms. Implicit schemes often exhibit unconditional
stability for model equations, but involve more complex
code and more computer time per iteration. Explicit algo-
rithms are usually conditionally stable, but are relatively
easy to program and require less time per iteration.

In discussing explicit versus implicit, one must differen-
tiate between unsteady and steady-state problems. Usually
the criteria that sets the maximum time step for explicit
metheds is the same criteria for time accuracy. That is, the
time step must be small to obtain a time-accurate solution
and small can mean of the same order as is required to
maintain stability of an explicit scheme. So the larger time
step possible in implicit methods often cannot be used if one
is interested in time accurate solutions. Thus there is often
little reason to use implicit methods for time accurate CFD
problems.

However, when one is interested only in the steady-state
solutions (large time behavior), implicit methods may offer

advantages due to their ability to use large time steps. This
is easy to demonstrate on model problems, but is often not
realized on complicated problems. Typically, the more com-
plicated the physics or the geometry of the problem the
more often people will choose explicit methods. Industrial
CFD codes have often been explicit, in order to minimize
coding time and maximize the flexibility of the code.

Most stability analyses are for linear probiems and
ignore boundary condition effects. The effect of either non-
linearities or boundary conditions usually force the implicit
algorithms to have time step restrictions that are not very
different than modern explicit methods such as multi-grid
Runge-Kutta with residual smoothing and pseudo-time
marching. For unsteady problems the amplitude and phase
errors arc a better indication of accuracy than the trunca-
tion error.

Also, the ability to take larger time steps does not ensure
that the solution will converge in fewer iterations. The
amplification factor of the scheme and the work per time
step is a better indication of the time to convergence. While
one would like to have an amplification factor near unity for
unsteady problems, to rapidly reach a steady state it is
desirable to have amplification factors that are small (less
than one). This causes the transient effects to rapidly decay.

The algorithm described below is an explicit scheme that
is unconditionally stable [ 1, 27. Explicit schemes exhibiting
unconditional stability have been developed [8, 5], such as
Saul'yev’s alternating direction explicit (ADE) and the
Dufort-Frankel algorithms. However, these techniques are
unconditionally stable only for the heat equation. In addi-
tion, the ADE method is not readily parallelized due to its
data dependencies. The scheme described below is uncondi-
tional stable when applied to convection and/or diffusion.
It is also highly parallel.
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This is an important development because new types of
algorithms may well be required for the next generation of
computers in order to take maximum advantage of their
architectures. In particular, on massively paraliel computers
one would like to minimize the amount of iong-range
communication, which is required when using implicit
methods [4].

DISCUSSION

In order to illustrate the behavior of these new uncondi-
tionally stable explicit methods, they will be applied 10 a
number of model problems. The basic equations that will be
solved will be the various forms of the nonlinear, viscous
Burgers equation [3]:

cu(x, ty

_ 2
Y +u{x, #)-Vu(x, t)=v Vau(x, 1),

(1)

where v20. In one spatial dimension with wu(x,t)—
u{x, 1)+ ¢ this reduces to

du(x, t)
of

dulx, t u(x, ¢t
x4 220, THED

(2)

This equation includes a number of features found in fluid
dynamic problems, including nonlinear convection (hyper-
bolic) and viscous diffusicn (parabolic). By modifying the
constants ¢ and v in the equation, one can investigate
problems deminated by nonlinear effects, linear convection,
or diffusion. One can also look at problems where the con-
vection terms and the diffusion terms are both important.
This equation also can simulate unsteady problems or
steady-state problems. For example, with oscillatory
boundary conditions one can investigate nonlincar wave
propagation with or without diffusion. For steady boundary
conditions, one can investigate phenomena such as long-
time behavior representative of steady-state heat conduc-
tion problems, steady-state boundary layer-type problems,
or steady-state shock wave problems.

When discussing the suitability of algorithms, it is impor-
tant to address unsteady and steady probiems scparately, as
well as convection and diffusion separately. The advantages
and disadvantages of particular schemes will depend on
which of these four cases one is investigating.

DIFFUSION

The diffusion equation in one dimensicn is given by

dulx, 1) . %ulx, 1)
a0 axt

If we discretize the spatial part to second order in the grid
spacing 4x on a uniform periodic grid with an even number
of sites, and approximate u,(t) = u(x = j 4x, ), we obtain

du, v

E=A—xz(uj+l—2uj+uj,1).

(4)

In matrix form with u(z) = [u{z), (), ...]", this becomes

-2 1 0 - 0 1
du(s) v 1 =2 1 0
& A 0 1 -2 1 ) )
Let
-2 1 0 .-- 0 1
1 -2 1 0 0
= 6
L 0 1 -2 1 0 (6)

Then, this can be split into two pieces L = L, + L, where

-1 1 0 0 .-.0
1-1 0 0 -.-0
L,= o o0-1 1--0 (7)
0 0 1 -1 ...0
and
-1 0 0o 0O -1
o -1 1 0 ...0
Ly,= 0O 1 -1 0 ...0 (8}
O 0o 0-1...0

Now, the exact solution to the spatially discretized diffusion
equation is

u(s + At)=cxp(aL}u(t), (9)
where a=v At/Ax>. 1t is the approximation of this
expression that determines the integration algorithm. The
first naive explicit algorithm is

exp(al)=1+al + O(a?), (10)
which is stable provided that a<3. The first implicit
algorithm approximates

exp(al)=[1—aL]~'+ 0(x?), (11)
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which is unconditionally stable but requires the expensive
matrix inverse operation. The higher order implicit or
Crank—Nicholson schemes are simply approximating

exp(al) = [1 +%L:|[1 —%L:l_l 1O (12)

The exponentiated matrix exp(xL) is dense, since it
involves ail possible powers of the tri-diagonal matrix L.
However, we can approximate the exponential by splitting
Linto L=L,+ L, and writing

exp(aL)=-exp(aL,) exp(zL,) + O(a?). (13)
The approximate time stepping operator,
P =explal,)explal,), (14)

forms the basis for our unconditionally stable integration
algorithm for the diffusion equation.! The splitting part of
our algorithm is similar in spirit to the splitting up method
of Marchuk [7]; however, his techniques are not explicit
and require the solution of large sparse sets of linear
equations at each time step.

To compute the matrix exponentials, note that both L,
and L, are block diagonal and we need only consider the
exponentiai of the two by two matrix

N b 11
= -
By using the series definition of the exponential function,

we see that
NNl+e ™™ J—e =
exp(d)= (2)(1 —e 14 e'z“)'

Since both L, and I, are block diagonal, exponentiating
them amounts to exponentiating 4. Of course, both
expl(al,) and exp(«L,) are also block diagonal. Since the
eigenvalues of exp(4) are 1 and ¢~ it follows that the
matrix L, norms of |exp{al. )| €1 and |exp(«L,)| €1. To
prove the unconditional stability of the algorithm we need
only show that {|2| < 1. This follows immediately since
121 = llexp(aL.,) exp(aL, )| < |lexp(aL,}lj [lexp{xL, )]}, each
of which is less than unity by the preceding argument.

To compute the wave number dependent amplification

factor, we need to find the action of 2 on a plane wave, with
wave number £,

(15)

(16)

ulk);=e™ 4~

(17)

'For more accuracy one can
exp((/2) L, Yexp(aL,) exp((e/2) L.} + O(a’).

verify  that  exp(al)=

The square of the amplification factor is given by

_ | Pulk)’
Ié(k)lz—W- (18)
We find that
[E0) = [5(L+e ) {19)
+1(1 re_“‘) cos{k Ax} (20)
+ 1(1 — e~2)2 cos(2k Ax) ] (21)
+[§(14(3_2°‘)2 sin(2k 4x)]°. (22)

It can be checked that [&! < 1 for all &, «, so the algorithm
is indeed unconditionally stable. This is compared with the
usual implicit method [6], for which

1
impten = 1 -+ 4 sin®(k A4x/2) (23)
and the exact result, where
Eexact = exp{ — 4 sin’(k 4x/2)} {24)

In Fig. 1 we have plotted the solid curves of {é(k)| for the
method described in this paper and compared it to an

implicit solver whose |£(k)| is shown in the dashed curves
fora=4, x=1, and a = 10.

0.75 —

|&(k)]|
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s
FIG. 1. Amplification factor.
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WAVES

The linear wave equation in one dimension is

du(x, t) 5u(x, 1)

ot Y

(25)

If we difference the spatial part to second order in the grid
spacing Ax on a wniform periodic grid with an even number
of sites, we obtain

du,
(i — 1) =0, (26)
In matrix form this is
¢ -1 0 0 1
du(t) ¢ 1 0 —1 00
=— . (27
a “axl o 1 0 -1 .. 0% @D
We have
o -1 0. 01
1 0 -1 . 0D 0
= 28
L 0 1 0 -1 - 0 (28)
which can again be split into L= L, + L, where
0O —1 0. 0 0
1 o 0... 0 0
L,=] 0 0 0 —-1 .- 0 (29)
0 01 00
and
O 0 ... 01
0o 0 -1 ... 0 0
L,= 1 0 0 ---0 (30)
-1 0 0 0 0
Define
¢
=_—— At il
x 24x G
Then, the soiution is
u(zr+ At) =exp(aL}u(z}. (32)

AND LONG

Now, exp(aL) is not available in closed form, but we can
again approximate

exp(aL) =exp(xL,} exp(aL,) + @(a?). (33)
The approximate time stepping operator
FP=exp(al,)exp(al,) (34)

again forms the basis for our unconditionally stable integra-
tion algorithm for the wave equation.’

Since L is tridiagonal, exp(al) is dense. However,
because both L, and L, are block 2 x 2 diagonal, they can
be easily exponentiated to give 2. Let

0 -1
a=a(] 7o) (35)
We again sum the exponential series to find that
cos{a) —sin(a)
= . 36
exp(4) (sin(a) cos(a)) (36)

Since both L, and L, are block diagonal, exponentiating
them amounts to exponentiating 4. Of course, both
exp(xL,) and exp{«l,) are also block diagonal and
orthogonai. Since the eigenvalues of exp{4) are ¢™ and e~ ™
which lie on the unit circle, it follows that |exp(aL, )| =1
and |lexp{aL,)l =1. Since P =explal,)expizl,) is the
product of two orthogonal matrices, # is also orthogonal
and || 2| = 1 and our algorithm is unconditionally stable. In
this case the square of the amplification factor is unity as it
should be.

DIFFUSIVE WAVES

In order to solve problems which have both diffusive and
advective parts, we must combine the results of the previous
two sections. Consider the equation

Julx, 1) te ou(x, 1)

ulx, 1)
=YV
ot dx

ox? (37)

which has both advective and diffusive terms. We solve this
exactly by

W+ A1) = UL H aUALILIBR (1) (38)

? For more accuracy one can again verify that exp(a:L) =exp{(2/2} L,)
explal,} expl(a/2) L,) + &(a).
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and approximate it by

wave

ll([-i-AI) = e(cAr/de)L,

% e(vdl,"sz)L‘:mmiDn e(vAr/Axl}L‘;‘”“”"“

pledizax) Lywe

xu(t)+ O([41]%)

— gwavegdiﬂusion l-l(f) + @([At]z) (39)
The stability proof for this aggregate stepping operator
follows from the fact that || pavegpdiiusion o j| gpwave|
“.@daﬁuswn” < 1 Sil‘lCC "?wave” =1 and “gadiﬂusion” < 1 by the
results of the previous sections.

NONLINEAR TERMS

To solve nonlinear time dependent problems we locally
linearize at a given time and use the algorithms described
above. Consider first a nonlinear diffusion problem like

212 o, 1%, 1)

dp(x, 1)
ot dx )

40
o (40)
A second-order differencing of the spatial derivatives leads
to

do.
24 L= (D, 4D, 1) ;.

+(DJ+D141)P;‘—1

—(2D;+D;,_+D;, ) p; (41)
which may again be split into even and odd parts which
leads to our familiar two by two’s which take the form

LD D (-1
24x 1 —1)

(42)
Since D is positive these matrices have one negative and one
zero eigenvalue, which means that when exponentiated all
eigenvalues are < 1, yielding stability as before.

Consider next a nonlinear wave problem like

3ol 1) _
T_F(p(xa t)a X, I)

L Glols, ox D plx D (43)
ox

A second-order differencing of the spatial derivatives leads
to

dp;
2Ax—'i=F'j[Gj+lpj+l_G'—lpj—lJ

dt / (44)

which may again be split into even and odd parts which
leads again to two by two’s which take the form

A=L( 0 FGroi\
24x\—F;,,G; 0

Again the exponential series may be summed to obtain

(43)

4t F,G, ., sin(f)
24x 8
cos(0) !

cos(0)

At F, G, sin{8)
24x 0

where 0 = (4¢/24x) \/F;G; . F;,,G;. Note that 4 is skew
symmetric only when F;= 4+, and in this case ed* 1 will
have eigenvalues on the unit circle so [e?#|| =1, which
leads to stability.

NUMERICAL RESULTS

As a test case of our algorithm we integrate Equation 2
for xe [0, 1] with the boundary conditions that (1, r)=0
and u(0, 1) = A4 sin{wt). We have chosen 4 = 100, ¢ = 300,
A=0.2 with & =2n/Ac which is a highly nonlinear regime.
Here v=0.1and 4x = 5;. At =cfl Ax/{c+|4])=48x10?,
where cfl =0.01. These results are displayed in Fig. 2,
where we have compared our methed to a fourth-order
Runge—Kutta scheme. We see that after 40,000 time steps
the solid curve and the dashed curve are almost identical.
This figure clearly shows nonlinear wave steepening and
viscous dissipation.
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FIG. 2. Solution to Burger's equation after 40,000 time steps.
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FIG. 3. Solution to Burger's equation after 0, 500, and 1000 time steps.

As a final case to test our algorithm on nonlinear steady-
state behavior we again integrate Eq. (2) for xe[ -1, 1]
with the boundary conditions that #(—1,{)=—1 and
u(l,2)=1 and u(x, 0)=x, with v=1i. We have chosen
At/Ax = § with 4x = &;. The steady state behavior can be
compared to the exact solution u(x, t - o0)=tanh(x/2v).
This evolution of the steady-state shock wave is displayed in
Fig. 3 at various time steps. We have also investigated
reducing dx holding A4t fixed and have done the same
simulation with Ax =3 and = and found results that
are almost identical to those shown in Fig. 3 with the
added improvement that for long times there is increased
steepening due to the finer grid.

HIGHER DIMENSIONS

In order to implement these algorithms in higher dimen-
sions on structured grids we must break the spatial operator
L into an even part and an odd part for each spatial direc-
tion. If we consider the three-dimensional probiem defined
on an even three-torus, this amounts to approximating

eu:L — ezL:eJLgeuL':euL';ezL;esz 4 (9(&2)

(47)

which is straightforward to implement.

UNSTRUCTURED MESHES

To extend our technique to unstructured meshes we must
find a splitting of L into m terms. For our one-dimensional
examples L was split into two terms L, and L,. In the

previous section it was shown how to split L into six pieces
for a structured three-dimensional problem. If we can find
such a splitting L =37_ L_, we approximate?

a=1

eaL= l_[ (31[“‘4—(9({12).

a=14

(48)

Solving this splitting problem is equivalent to finding an
m-coloring of the line graph of L. It can be shown [9] that
the line graph of L can be colored in less than or equal to
one plus the largest degree of any vertex in the graph of L.
This means, for example, that if we use a finite-volume
scheme based on tetrahedrons then L can be written as a
sum of at most five terms since each tetrahedron has four
faces.

CONCLUSION

We have presented new unconditionally stable and
explicit algorithms for nonlinear fluid dynamics problems
and explored numerically some simple one-dimensional
problems to demonstrate the use of our methods. In addi-
tion, we have laid a groundwork for handling large unstruc-
tured problems in higher dimensions.

Algorithm design needs to be reevaluated with parailel
processing in mind. The methods presented in this paper is
one way to do this and could be the starting point for a new
generation of method.
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*For an accuracy &(x’) we use the formula e =[]7_, ol}/ate
[Ti_ .. et 4 0(2),



